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Rapid-distortion theory is adapted to introduce a truly unsteady closure into a 
simple phenomenological turbulence model in order to describe the unsteady 
response of a turbulent wall layer exposed to a temporarily oscillating pressure 
gradient. The closure model is built by taking the ratio of turbulent shear stress to 
turbulent kinetic energy to be a function of the effective strain. The latter accounts 
for the history of the flow. The computed unsteady velocity fluctuations and 
modulated turbulent stresses compare favourably in the ' non-quasi-steady ' 
frequency range, where quasi-steady assumptions would fail. This suggests that the 
concept of rapid distortion is especially appropriate for unsteady flows. This paper 
forms the basis for acoustical studies of the problem to be reported elsewhere. 

1. Introduction 
The study of unsteady turbulent flows is relevant in many technical applications, 

such as turbomachinery, Stirling engines, and nozzles. Pulsating turbulent flow in 
pipes and channels and over flat plates has received special attention recently because 
it provides relatively simple configurations for fundamental studies of unsteady 
turbulent shear flows and their possible control through forcing. Karlsson (1959) was 
the first to study pulsating turbulent boundary layers over a flat plate. More recently 
Binder & Kueny (1981), Cousteix, Houdeville & Janvelle (mi), Parikh, Reynolds 
& Jayareman (1982), Binder et al. (1985), and Tardu, Binder & Blackwelder (1992) 
have experimentally studied pulsating flows in channels. Tu & Ramaprian (1983), 
Shemer & Wygnanski (1981), Shemer & Kit (1984), and Shemer, Wygnanski & Kit 
(1985) have addressed the pipe flow problem. A thorough review and compilation of 
existing data on pulsating, wall-bounded flows can be found in Carr (1981). 

One general result from the experiments is that no preferred frequencies were 
found, in contrast to excited free turbulent flows. However, for wall-bounded flows 
the modification of the turbulence structure by pulsations nevertheless does depend 
on the frequency range. Carr (1981) pointed out that a t  low frequencies a quasi- 
steady behaviour is observed, as would be expected. The time- or Reynolds-averaged 
mean-flow velocity profile is practically the same as that for steady flow with the same 
local external flow. In this case, although there are significant variations in the 
turbulence energy and shear stress, their ratio remains at the quasi-steady value. As 
the imposed oscillation frequency is increased beyond a ' critical ' value, significant 
interactions occur between the periodic oscillations and the turbulence structure. 
Mizushina, Maruyama & Shiozaki (1973) related this critical frequency to the 

t Also CNRS, Laboratoire d'Aerothermique, F-92190 Meudon, France. 
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turbulent burst in the flow and showed that the turbulence intensity no longer 
follows that observed in the unperturbed-flow case. In  the same postcritical 
frequency range Ramaprian, Tu & Menendez (1983), Binder et al. (1985), Mao & 
Hanratty (1986), and Tardu et at. (1992) also observed that the turbulence structure 
near the wall is perturbed out of equilibrium. The appropriately phased-averaged 
turbulence intensities and shear stress experience rather large frequency-dependent 
phase shifts. 

Several attempts have recently been made at computing periodic turbulent shear 
flows at various levels of modelling effort (e.g. Cousteix et al. 1981 ; Tu & Ramaprian 
1983 ; Menendez & Ramaprian 1983 ; Hanjalic & Stosic 1983 ; Cook, Murphy & Owen 
1985; Mankbadi & Mobark 1991. The main defect is that these closure relations were 
identical to those used for steady flows and thus have not been successful, except in 
the quasi-steady region, in predicting results consistent with observations beyond 
the ‘critical’ frequency region, as pointed out by Hanjalic & Stosic (1983). 
Furthermore in these models the near-wall velocity was taken to be that given by the 
law of the wall for steady flows. Thus the important issue of the turbulent Stokes 
layer was completely circumvented. More recently Kebede et al. (1985), using the full 
Reynolds stress model but with quasi-steady closure, computed periodic turbulent 
flow properties down into the viscous layer region. For application to pulsating 
turbulent flows, however, the results were time-step dependent and deviated 
considerably from observations. 

On the basis of their observations Binder & Kueny (1981) and Tardu et al. (1992) 
point out that the relevant dimensionless parameter of the near-wall region is the 
ratio of the viscous Stokes-layer lengthscale (2vlw): to the near-wall viscous-layer 
lengthscale in turbulent shear flows v /U, ,  where v is the kinematic viscosity, o the 
forcing frequency, and U, the frictional velocity. In fact the ‘critical’ frequency is in 
the range where the ratio of the two layers is of order unity. The so-called critical 
frequency region is now understood in terms of the parameter 2,’ = (2U2,/vo); being 
about 10. In this parameter region the dynamical effects of the periodic forcing 
strongly influence the wall-region viscous layer of the turbulent shear flow. In fact 
Cousteix (1986) concluded that a correct description of the near-wall region would be 
essential for obtaining the wall shear stresses in the intermediate- and high-frequency 
regions. 

In the present paper we focus our attention on an appropriate, but simplified, 
modelling of pulsating turbulent flows in the ‘ high frequency ’ region in terms of the 
parameter l:, where quasi-steady models have been known to be inadequate. The 
theoretical consideration naturally follows the feasibility indicated by Shemer & 
Kit’s (1984) observations and by Gibson (1985) in separating the time-dependent, 
phase-averaged field from the time-independent, Reynolds-averaged field. In fact 
Carr’s (1981) survey indicates that experimentally the mean field is not affected by 
the pulsations and can in fact be obtained from quasi-steady models. Therefore, we 
shall regard the mean flow as being given here. For the near-wall, phased-averaged 
field we shall solve the momentum equation for the periodic velocity component in 
conjunction with the phase-averaged turbulent kinetic energy equation supple- 
mented with relations obtained from extensions of the rapid-distortion theory (e.g. 
Hunt & Carruthers 1990). 
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2. Formulation 
The physical problem concerns the near-wall responses of periodically forced 

channel, pipe, or turbulent boundary-layer flow. To fix ideas, consider the flat-plate 
problem with an external velocity of the form 

Uo(t) = Do+ Do, (1) 
where t is the time, Uo is the time-averaged external velocity, D,, = A exp (iwt) is the 
imposed pulsation, and A is its amplitude. In the external region the oscillating 
velocity is equivalent to the oscillations in the pressure gradient given by the inviscid 
relation 

(2) 
where 9 is the oscillating pressure (with the fluid density absorbed into its 
denominator for convenience) and x is the streamwise coordinate. Differentiations 
are indicated by subscripts. Correspondingly the derivation of the fundamental 
equations for the mean motion, the periodic component, and the turbulence follows 
from the splitting of the total flow quantity &(xi,t) into the three components: 

9, = - i d  exp (iwt), 

&(xi, t )  = &(Xi) +mi, t )  +q’(z,, t) ,  (3) 
where Q is the time-averaged component, the periodic component, and q’ the 
turbulence. The derivation of the appropriate conservation equations is now fairly 
standard, even for multiply-interacting periodic modes (see e.g. Liu 1988, 1989). It 
suffices only to briefly outline the procedure and state the results of the simplified 
level. The time average, denoted by an overbar, is supplemented by the phase 
average, denoted by ( ). If we substitute the decomposition into the full 
Navier-Stokes equations for an incompressible fluid, the mean-flow momentum 
equations are obtained by time averaging. If we subtract the mean-flow equations 
from the phase-averaged ones, the momentum equations of the periodic component 

would be obtained. The crucial link with the turbulence comes from the modulated 
turbulent stresses denoted by 

where u; denotes the turbulent velocity components. 
The momentum equations for the turbulence are then obtained by subtracting the 

phase-averaged momentum equations from those for the total flow quantity. The 
definition of the modulated stresses Fij in (4) gives a clue to their derivation: the 
modulated turbulent kinetic energy, denoted by I?, is but a special case of Fd,; its 
transport equation can also be obtained in a direct manner. The equations so 
obtained are stated in Liu (1988), and in the following we shall deal with limited 
versions, through appropriate arguments, for the physical problem at hand. 

2.1. Simpli$cations 
The extent of the near-wall region normal to the surface is ‘thin’ relative to the 
streamwise extent, and all 2-derivatives (except for the external pressure) are 
neglected relative to the derivatives normal to the wall. The pressure is constant 
across the near-wall region. The vertical velocity is absent and the flow is 
unidirectional and thus C = C(y, t),  where y is the coordinate normal to the wall. The 
problem is further simplified by considering small perturbations, and a linear 
description suffices. 

Even in this much-simplified framework, S is coupled to the modulated and mean 
turbulent flow fields through the action of the modulated stress Fxu in the C 

(4) 
7 Ti* = (u;u;)-uiu*, 
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momentum equation. Rather than dealing with transport equations for the shear 
and normal stresses, we chose to include only the modulated turbulent kinetic energy 
equation for I?. This choice was motivated by the earlier work of Bradshaw, Ferriss 
& Atwell (1967) for the mean-flow problem. In this case there is no explicit need to 
make closure statements about the elusive pressure-velocity strain correlations 
because, for the energy equation, the action of the pressure gradients is recast into 
the ‘diffusional’ effect due to pressure work. If nonlinear effects are included, the 
diffusional effects would then also include the turbulent transport of I?. This, 
together with the transport due to pressure work, can be neglected in the near-wall 
region in favour of viscous diffusion alone. 

The simplified momentum equation for the periodic flow and the modulated 
turbulent energy equation are then, respectively, 

where RZg is the mean Reynolds shear stress, which, together with the mean velocity 
0, is considered as a given function of y. The problem requires the closure relation 
for the modulated viscous dissipation rate E“ and the relation between Fzzy and I?. The 
boundary conditions require the no-slip condition at  the wall and that ti and I? 
approach some limit ‘far’ away from the wall. We shall state the boundary 
conditions after appropriate scaling, following closure arguments. 

2.2. Closure arguments : extensions of rapid-distortion ideas 
We refer to Hunt (1978), Hunt & Maxey (1978), and Hunt & Carruthers (1990) for 
a review of rapid-distortion theory and some of its applications and to Maxey (1982) 
for a re-examination of the theory with respect to descriptions of channel and pipe 
flows. The main formal assumption is that the fluctuating strain rates of the 
relatively large eddies are much weaker than the distortion due to the mean shear. 
For the perturbed ‘high ’-frequency turbulent shear flows it is conceivable that 
distortion would take place over timescales that are short relative to the timescales 
for the decay of the relatively large eddies. In this situation rapid-distortion theory 
could be justified for applications to the frequency range of practical interest. 

On the other hand, for unperturbed turbulent shear flows, where the basic 
assumption of rapid distortion is not entirely satisfied, Townsend (1970, 1976) 
nevertheless has shown that the turbulence structure can be satisfactorily described. 
Although rapid-distortion theory does not provide the practical framework for a 
turbulent model, it  does provide the ratio of the stresses to the turbulent kinetic 
energy in terms of an effective distortion strain. The quantitative formulation of the 
effective distortion strain then provides the remaining closure relation between the 
stresses and the energy. The extensions of these ideas to periodically perturbed 
turbulent shear flows are described here. 

On the basis of an initial axisymmetric, rather than isotropic, spectrum tensor, 
Maxey (1982) computed velocity moments from the rapid-distortion theory that 
relate the general two-point velocity t o  such a tensor. The result for the ratio of the 
shear stress to the energy appears in the form 

-Rzy = F(u)K ,  (7)  
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where R,, is the shear stress, K is the kinetic energy, and a is taken to be the effective 
strain for a locally uniform shear ; over an appropriate timescale a becomes a rate of 
strain. The function F(a)  for small strains is of the form 

where a = 5 [ ( 3 / 5 - 1 ) / ( 1 + 2 / 5 ) ]  and b = & [ ( 2 1 / 5 - 1 5 ) / ( 1 + 2 / S ) ] .  The initial aniso- 
tropy ratio S for shear flows is defined as the ratio of twice the largest normal stress 
(the streamwise component) to the sum of the two remaining normal stresses, 
evaluated at  the centreline for pipe and channel flows. Maxey (1982) showed that 
existing experiments give S of about 1.8 for channel flows. The approximation of P(a)  
by (8) is correct to 10% over the range 0 < a < 8 (see Hunt & Maxey 1978, p. 255, 
and Maxey 1978). Since the maximum of a is 3.5 (Maxey 1982), this approximation 
should be within reasonable error. For locally uniform shear a relaxation equation 
describing the effective strain a was proposed by Maxey (1982) that in the present 
contcxt takes the form 

aa aU a 
at ay T' ( 9 4  -=--- 

where T is an eddy timescale. 

equilibrium flow for long timescales, in which case 
As Hunt (1978) pointed out, the advantage of ( 9 a )  is that it recovers the limit of 

dU 
a = T - ,  

dY 
and for small timescales the rapid-distortion form is obtained : 

da dU 
dt dy 
_-- - 

The relation (9b )  is used by Maxey (1982) to estimate the timescale T as follows. He 
analysed some experimental data to evaluate the stress ratios as a function of 
position. He then used distribution of the ratio r /pu2 to specify a profile of effective 
strain by comparison with predicted results of rapid-distortion theory. Maxey found 
the profiles of the effective strain to be similar for most of the experiments 
considered, varying roughly linearly from zero to a maximum of about 3.5 at the 
wall. The ratio of mean shear to effective strain, (Sb) ,  gives an estimate of the 
distortion timescale T (see Maxey 1982, Table I, p. 274). The same procedure was 
followed herein, given du/dy at the wall and a maximum of 3.5 for the effective strain 
at  the wall; T was calculated from (9b) .  

The imposed periodicity upon an existing steady external velocity, given by (i) ,  
then suggests the perturbation of (7)-(9) ,  consistent with ( 5 )  and (6), in the following 
form : 

(10) 

where F denotes the differentiation of F with respect to its arguments. Substituting 
(10) into (7)-(9)  and linearizing gives the small-perturbation relations 

F ( a )  = F(E)+EJ"(E),  a = c ~ + d i ,  U = U + Z ,  

- pz, = F ( E ) R + F ' ( E ) l f d i ,  ( 1 1 )  

3 FLM 238 
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Relations (11) and (12) will enable us to replace FZv by l? in (5 )  and (6). 
The final closure argument is with regard to  the modulated viscous dissipation rate 

E. We rely on the arguments that  the small eddies contribute to viscous dissipation 
and that their timescales are such that they are nearly in equilibrium. In this case 
Ewould be a perturbation from the usual postulated form (e.g. Alper & Liu 1978). For 
the present problem we shall deduce the form for 15 directly from the perturbation 
energy equation (6). The argument for the smaller eddies is that there is a local 
equilibrium between production, given by the first two terms on the right-hand side 
of (6), and dissipation in the wall region (see e.g. Patel, Rodi & Scheuerer 1985). If 
we further hypothesize for estimating Z that  an eddy viscosity relation might hold for 
both the mean and modulated stresses, and if the eddy viscosities are the same, then 
the two production terms are equal and are equated to the dissipation rate 
8 = - 2FZu dU/dy. Because of the local equilibrium arguments the quasi-steady form 
of the relation between stress and energy is used, leading finally to  

R. R. Mankbadi and J .  T .  C. Liu 

dU - 
E = 2F(cc)--K. 

dY 

Other simple models for E (such as Z = @/a) were considered, but no significant 
difference was found. It is believed that a modelled near-wall differntial equation for 
E should be used to  improve the dissipation model. As in the study of Patel et al. 
(1985), such an equation is known to be unreliable even for the high-Reynolds- 
number case (not including the wall layer). Therefore going to this complexity would 
complicate matters further and would confuse the main objective of this paper, 
which is to show that the rapid-distortion theory (and not an improved E equation) 
can be used to account for truly non-steady effects in a turbulence model. 

2.3. Boundary-value problem : turbulent Stokes layer 
Subject to the driving external flow of the form ( l ) ,  the perturbation flow quantities 
are also assumed to  be harmonic and can be represented by the real part of 

@(Y, 4 = B(Y) exp (W> (14) 

where the amplitude functions B(y) are complex. After substituting flow quantities of 
the form (14) into the system ( 5 ) ,  (6), and (11)-(13), we further define non- 
dimensional quantities U+ = l7,,/U*, R&, = R,,/V,, u+ = &/(A/U*) ,  A+ = A/U, ,  
K+ = K/A+V*, r& = +zv/A+V,, wi = wv/V*, E+ = Bv/A+U+,, y++ = y+/w+ and 
y+ = yU,/v. We recall that  A is the amplitude of the periodic part of the external 
velocity and that oo is its steady part, and in application to  pipe or channel flow 
problems, these will be regarded as the centreline values. The dimensionless forms of 
(5) and (6) then appear as 

iw+G+ = iw+ + (2;+)”- (;+ ZY )’ ’ 

iw+I?+ = - i&,( U+ )’ - R;JG+)’ + (K+ )” - 2, 
(15) 

(16) 

where a prime is used to denote differentiation with respect to y+. Each of the terms 
in (15) and (16) has the same interpretation as thc corresponding terms in ( 5 )  and (6). 
The boundary conditions are 

A 

y++ = 0, G+ = K+ = 0 ( 1 7 4  

and y++ --f a, (G+)’ = = 0. (17b)  
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The closure relations (1 1)-( 13) become 

T+(i+)’ 
I+iw+T+’ 

a =  

and z+ = W ( E )  (U+)’lZ+, (20 )  
where T+ = T V , / v .  In  (19) the representation (14) has also been applied to di .  

2.4. Numerical problem 

The system of equations (15), (16), and (18)-(20) and the boundary conditions (17) 
form a boundary-value problem. The variable coefficients, such as R:v and (U’)’, 
were obtained from experimental data in the wall region (Laufer 1954; Schubauer 
1954 ; Derksen & Azad 1981 ; El-Telbany & Reynolds 1981 ; Patel et al. 1985) and 
fitted with simple functions of y+. 

The boundary-value problem was then solved by using the SUPORT program (Scott 
& Watts 1975). The method of solution uses superposition coupled with an 
orthonormalization procedure and a variable-step Runge-Kutta-Fehlberg inte- 
gration scheme. Each time the superposition solutions begin to lose their numerical 
linear independence, the vectors are reorthonormalized before integration proceeds. 
The basic principle of the algorithm is then to piece together the intermediate 
orthogonalized solutions, defined on the various subintervals, to obtain the desired 
solutions. 

3. Results and discussion 
We have previously defined the parameter I s ,  which is essentially the ratio of the 

Stokes-layer thickness (2v/w)i  to the near-wall-region viscous lengthscale v /U , .  Now 
1: is related to the dimensionless frequency w+ as 1,’ = (2 /w+) i ;  when the viscous 
Stokes layer becomes of the same order as the wall-region viscous layer, 1; x 10, in 
which case w+ x 0.02. This is the range of the parameter w+ when strong unsteady 
interactions take place in the near-wall region. 

3.1. Phase-averaged streamwise velocity 
The calculated oscillations in the streamwise velocity are compared with the 
experimental data of Binder & Kueny (1981) and Binder et al. (1985) in figure 1. 
Figure l (a)  is for the case of 1,’= 5.6(w+ =0.0637), and figure l ( b )  for 
I,’ = 17 (w+ = 0.0069). In the higher-frequency case an amplitude overshoot occurs, 
as would be expected of Stokes-like viscous layers, and this overshoot moves toward 
the wall as the frequency is increased. For the high- and low-frequency cases the 
amplitudes agree reasonably well with the data. The phase angle, relative to that of 
the imposed velocity oscillations, compares well with the data for the higher- 
frequency case. The phase shift near the wall is positive and approaches the Stokes 
value an. In the lower-frequency case the agreement for the phase shift is less 
satisfactory. 

3.2. Phase-averaged wall shear stress 
The oscillating wall shear stress is shown in figure 2 in comparison with the 
measurements of Binder et al. (1985). The magnitude, normalized by the Stokes value 
at the same frequency, is given in figure 2 ( a ) .  The derivation from unity represents 

3-2 
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the departure of the present solution from that of the laminar Stokes layer. The 
phase angle #,, referenced to  the phase of the free-stream velocity, is shown in figure 
2 ( b ) .  Although the present theory is concerned with the relatively 'high '-frequency 
region 1: x 10 (w' x 0.02), the results are nevertheless shown for the extended region 
1,' x 70 (w' x 0.0004), covering the low-frequency, quasi-steady region. The region of 
validity of the present theory can thus be examined. As expected, figure 2 (a) shows 
that the computed amplitude of the wall shear stress is in good agreement with the 
data in the region 1,' 5 20 (w+ > 0.005). At these 'high' frequencies the wall shear 
stress amplitudes dip below the Stokes value, as in the experiments. This behaviour 
was first observed by Ronneberger & Ahrens (1977) and also by Parikh et al. (1982). 
At intermediate frequencies the modulated shear stress increases over the Stokes 
values as in the observations. At larger values of 1,' the wall shear stress magnitude 
is underestimated relative to observations. 

The computed wall shear stress is also compared in figure 3 with the experimental 
data of Mao & Hanratty (1986) and Ramaprian & Tu (1983) as well as the predictions 
of the quasi-steady K - s  model (Mankbadi & Mobark 1991). The magnitude of the 
oscillatory wall shear stress is normalized by the mean wall shear stress and by the 
dimensionless forcing velocity (equivalent to the A defined previously). Mao & 
Hanratty's (1986) data are in the intermediate- to  high-frequency range and 
therefore are more relevant to the present analysis. Figure 3 ( a )  shows that the 
computed value is in good agreement with observations for w' > 0.005, as expected. 
For the K - s  model the agreement with experimental data in the low-frequency 
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range is acceptable, but the figure clearly shows the failure of the K - e model in the 
high-frequency range, where the present model becomes highly accurate. The phase 
angle in figure 3 ( b )  behaves qualitatively as observations in the frequency region 
uf > 0.015. It approaches an asymptotic value of about in. In  the low-frequency 
region the phase angle is overestimated. 

3.3. Modulated turbulent kinetic energy 
The amplitude of the modulated turbulent kinetic energy K+ is shown in figure 4 at 
several frequencies. The figure shows that the peak in the amplitude of the 
modulated turbulent kinetic energy moves closer to the wall with increasing 
frequency and it also decays rapidly with increasing frequency. Thus the thickness 
of the layer where turbulence is influenced by the imposed oscillations decreases with 
increasing frequency. The figure clearly indicates that the amplitude of the 
modulated turbulent kinetic energy decreases with increasing frequency. Thus the 
turbulence reaches a state of frozen structure at high frequencies. 

The present predictions of frozen turbulence at high frequencies is consistent with 
several experimental observations, such as those of Parikh et al. (1982). Turbulence 
models based on quasi-steady assumptions in which the turbulent stresses are 
proportional to the instantaneous velocity gradient cannot predict such phenomena,. 
The local time derivative of the velocity increases indefinitely, but the effective 
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strain reaches a finite value. As the frequency goes to infinity, the effective strain 
becomes zero. Therefore in the present model the turbulence can reach a state of 
frozen structure. 

3.4. Modulated normal stress 

We recall the definition of the modulated turbulent normal stress due to the 
streamwise component of the turbulence fluctuation, Fzz = < ( u ' ) ~ )  -m. This 
quantity is of particular interest here in that it has been measured by Binder et al. 
(1985). The modulated stresses FZz are obtained here as a byproduct of the 
computation by relating them to the turbulent kinetic energy through a function of 
the strain rate similar to that of (8) (see Maxey 1978, 1982). A comparison between 
our computed results and experimental data is given in figure 5 for the two values 
of w+, 0.03 and 0.0038. The main features of the observed structure are obtained by 
the present theory. The peak values of Fzz and its yf location both decrease slightly 
as w+ increases. In fact, the location of the peak is actually well described by the 
theory. However, figure 5 indicates that this component of the normal stress is 
underestimated by the theory. This might be due to the overestimation of the viscous 
dissipation rate near the wall. 

The phase angle of the oscillations in the modulated turbulent normal stress, 
relative to that of the oscillations in the local axial velocity component, q5fzz-q5G, is 
shown in figure 6 for several frequencies. The figure shows certain trends that are 
consistent with observations. The angle between Fzz and C increases with increasing 
frequency. The phase angle is negative, indicating a time lag that increases away 
from the wall, as observed by Ramaprian & Tu (1983). A t  high frequencies the peak 
in the magnitude of occurs at a phase lag of about 90" (i.e. during the deceleration 
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FIGURE 4. Modulated turbulent kinetic energy at several frequencies. 

(a) Amplitude w+I, ( b )  phase angle. 

phase as described by Binder et al. 1985). The figure shows that the phase lag 
increases with increasing frequency and attains a minimum close to the wall 
(1 < y+ < 5 ) ,  as observed in the case of pulsating pipe flow by Shemer et al. (1985). 
Even at the lowest frequency shown, figure 6 illustrates that there is still a phase lag 
of fzz behind 6, especially away from the wall. This is in accordance with Shemer & 
Kit’s (1984) observations for quasi-steady turbulent pulsaing flow in a pipe. The 
phase distribution thus seems to be sensitive to deviation from quasi-steady 
assumptions. This is in accordance with investigations of Ramaprian et al. (1983), 
which clearly demonstrated that the turbulence structure cannot be associated with 
the corresponding oscillating velocity in a simple manner. 
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3.5. Modulated turbulent shear stress 
The calculated oscillations in the shear stress Fz. are shown in figure 7 for several 
frequencies. The figure shows that the peak in the amplitude of oscillation decreases 
with increasing frequency and moves closer to the wall. This feature again indicates 
that the turbulence tends to reach a frozen state at high frequencies. To examine the 
relation between the oscillating turbulent shear stress and the oscillating velocity 
gradient, we show the latter in figure 8. By comparing figure 7(a)  with figure 8 ( a ) ,  
it can be seen that the Reynolds stress as a function of y+ varies considerably less 
than the oscillating velocity gradient, especially a t  high frequencies. 

3.6. Departure from structural equilibrium 
To examine the departure of the flow from structural equilibrium, we examine the 
ratio of the modulated shear stress to the modulat,ed turbulent energy .3,,/E. For 
equilibrium flows this ratio should be the same as that of the steady flow. The 
amplitude of this ratio is shown in figure 9 ( a ) .  The figure shows that the departure 
from equilibrium increases with the frequency. This departure reaches a maximum 
near the wall (3 < y+ < 8). For y+ > 20 the flow behaves like a quasi-steady one. This 
is consistent with the structure of oscillating turbulent boundary layers observed by 
Ramaprian et al. (1983). Figure 9(b )  shows that the phase angle of the modulated 
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FIQURE 7. Modulated Reynolds shear stress r& at several frequencies. 

(a) Amplitude Iriul, ( b )  phase angle. 

shear stress leads that of the energy and that this lead increases with the frequency. 
The phase lead is maximum near the wall and decrease rapidly away from the wall. 
These results, as well as previous experimental observations, emphasize that a t  
intermediate- and high-frequency ranges of oscillation the turbulent kinetic energy 
and the Reynolds shear stress are mutually out of phase. Thus eddy viscosity models 
relating the turbulence properties to the instantaneous local mean flow cannot 
accurately predict such flows in the region near the wall. 

The concept proposed by Shemer & Wygnanski (1981) of time-dependent eddy 
viscosity, which accounts for the memory of the turbulence incorporating a 
relaxation time, might be an improvement over the time-independent eddy viscosity 
models. However, the time-dependent eddy viscosity must necessarily be complex in 
order to include phase-lag effects. Some of these ideas were anticipated much earlier 
by Betchov & Criminale (1967, p. 255). 
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(a) Amplitude (dG/dy)/(dG/dy),, ( b )  phase angle. 

4. Concluding remarks 
The modulated turbulent kinetic energy and momentum equations were solved for 

the case of a boundary layer subjected to imposed oscillations in the external flow. 
The rapid-distortion theory was used to relate the modulated Reynolds shear stress 
to the modulated turbulent kinetic energy. Predicted results compared well with 
observations for frequencies larger than about uf = 0.005. 

The results obtained for the intermediate- to high-frequency range showed several 
trends consistent with observations : 

(i) A t  high frequencies the modulated wall shear stress decreases below the Stokes 
value. At intermediate frequencies it increases over the Stokes value. 

(ii) At high frequencies the modulated wall shear stress leads the oscillation in the 
mean flow by about 45O. This phase lead decreases with decreasing frequency. 

(iii) The peak of the amplitude of oscillations in the modulated kinetic energy 
decays rapidly with increasing frequency and moves closer to the wall. Turbulence 
tends to reach a state of frozen structure a t  high frequencies. 

(iv) There are large phase differences between the oscillations in the turbulence 
and those in the mean flow. These phase differences increase with the frequency. 
Thus the near-wall turbulence cannot be modelled by relating it to the local 
instantaneous mean-flow parameters. 
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(a) Amplitude l ~ & l / ~ + l ,  ( b )  phase difference. 

(v) The phase lag between the oscillations in the turbulence and the oscillations in 
the mean flow is minimum around 1 < y+ < 5, indicating that the turbulence is first 
produced near the wall. 

Examining the ratio of the oscillations in the Reynolds shear stress to the 
oscillations in the turbulent kinetic energy indicates that the deviation from quasi- 
steady assumptions increases with the frequency. This deviation is restricted to a 
thin layer next to the wall. The phase angle is more sensitive than the amplitude to 
the deviation from quasi-steady assumptions. 

The features obtained from the present theory are sufficiently encouraging that it 
seems worthwhile to develop ideas from rapid-distortion theory for further use in 
describing a class of unsteady turbulent shear flows, including the fascinating 
problems involving coherent structures and their control (Liu 1988, 1989; Mankbadi 
1992). 
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